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THREE-DIMENSIONAL DISTURBANCES IN A COMPRESSIBLE BOUNDARY LAYER* 

I.V. SAVENKOV 

The propagation of three-dimensional disturbances from impulsive and 

harmonic sources in a compressible boundary layer on a plane plate is 

discussed. It is assumed that the Reynolds number tends to infinity. 

The field of the perturbed motion is obtained in the context of the 

linearized theory of the boundary layer with selfinduced paressure. The 

solution of the linearized equations is decomposed into Fourier integrals. 

When finding the inverse transformations, numerical and asymptotic methods 

are combined. A comparison is made with experimental data and calculations 

of the linearized Navier-Stokes equations. The theory of a boundary 

layer (BL) with selfinduced pressure /l, 2 / is useful for studying the 

BL instability in an incompressible fluid at high Reynolds numbers R, 

see e.g,, /3-g/. At the same time, the asymptotic theory /l, 2/ predicts 

stability (in the limit as R-m) of the supersonic BL with respect to 

plane disturbances propagating strictly along the flow, which is incon- 

sistent with the well-known results for finite R, see e.g., /lo, II/. 

In the framework of asymptotic theory, however, the supersonic BL is 

unstable with respect to oblique waves (travelling at non-zero angles to 

the incoming flow) /12, 13/. It can therefore be expected that the packet 

of oblique waves of instability in the limit as R-cc is qualitatively 

correctly described by the theory /l, 2/. (All the more, because at 

finite R, as the Mach number M, of the incoming flow increases, the 

oblique waves become the most unstable, and their role is significantly 

increased in the supersonic BL /lo, ll/). A packet of oblique waves is 

generated by any source which introduces serious three-dimensional 

perturbations into the boundary layer. In the present paper,-such a 

source is taken to be injection and extraction via holes in the plate. 

The solution of specific problems assumes a detailed analysis of the 

influence of the Mach number M, on the BL stability (in the limit as 

R-m). 

1. Time instability. We start by analysing the dispersion relation (DR) 

F(Q, k, m;M,) = 0((n)- Q(k,m;M,) = 0 

Q = (ik)‘/,s (k2 + m2)/1/S7 s = m* + (1 - M-Y k2 

(1.1) 

obtained after linearizing the equations of the freely interacting compressible EL /14/ with 

respect to disturbances of the type f(y)exp(ot+ ikx + imz) /3, 12, 13/ (5, y, z are dimen- 

sionless coordinates, measured respectively downstream, along the normal to the plate, and 
in the lateral direction, t is dimensionless time, M, is the Mach number of the incident 

uniform flow, and Ai (5) is the Airy function. In the case S<O we understand by the root 
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in the expression for Q its branch on which I/?? = i 1/l S I. With this choice of the root 

sign, the DR (1.1) transforms with m=O and M, > 1 into the DR for the direct plane 

waves in a supersonic BL. 

We dwell first onthe simpler analysis of time instability when k and m in (1.1) are 

assumed to be real, and the complex frequency o =c? - io, has to be found from Eq.(l.l). For 
k and m which satisfy the inequality S>O (as is always the case when M, <I), weintroduce 
the new variable k’ = sign k 1 k 1 ‘/h(k” + m2)si+%. The DR (1.1) can then be rewritten as 

4, (Q) = Q' (k’), Q’ = (ik’)‘ls 1 k’ I (1.2) 

A DR of type (1.2) has been considered, see e.g., /4, ?/, when studying plane disturbances in 
an incompressible fluid. Its properties are well-known. For instance, it has a denumerable 
number of roots o,,' (k’) = (ik’)‘l* Q,’ (k’), of which only the first is unstable: Re q’ (k’)> 0 
for I k’ I > k’, = 1.0005 (the maximum of Re w1' (k’) is reached at 

equal to B,,~ = 1.240). Hence, by the chain of equations 

(k’ I = k,‘* = : .7:6 and is 

k’)‘h,’ (k’), 
o, (k, m; r_’ 1; (ik)% n (k ) = (ki 

the DR (1.1) likewise has only one unstable root with 

The relation 

~1 (k, m; n/r,) = (k/k’)%,’ (k’) (1.3) 

is a generalization of the well-known Squire transformation to the case of compressible flows 

in the limit as R-t 00. (It was shown in /3/ that, with ill, = 0, relation (1.3) is the 

limiting form of this transformation as R-+ w.) By means of it, we can easily trace analyti- 
cally the influence of flow compressibility (expressed in the Mach number M,) on the boundary 

layer stability characteristics. For instance, the neutral curve in the (k,m) plane is given 

by the obvious equation k’ = k% (k2 + m2)“l~S-‘h = k,’ (by symmetry, co1 (-k, m; Mm) = Gi,(k, m; M,) 
(the bar denotes the complex conjugate) and o,(k, -m; kf,) = o,(k m; Mm), so that it suffices 

to restrict ourselves to the range k>O, m>O). To find the maximum of R‘e o1 (k,m;.M,) with 
M, = const, we introduce the variable 0 = m/k, after which (1.3) can be rewritten as 

w1 (k, m; M-1 = f (PI ml’ (k If (P)l-“9 
f ((3) = (1 + py” ip2 + (1 - Mm2)l’/4 

and the problem reduces to finding f, = f&)= maxf(fi) for O< p < 00. Then, c, = max Re a1 
(k, m; M,) = f, Re wl' (kz’*), and the maximum ca is reached with k = k, = kz’*f2, m = m, = pke. 
Analysis shows that Be = 0 for M, < M,* = l/l2 and fi. = @Mm2 - I)"., with IV, > M,*, 
whence 

k,=( I- M,2)"lak;, m, = 0 for 171, < M,* 

k, = (2M,)-“/.kT, m, = (2M,2 - l)‘l2k, for M, > ,VF_* 

Clearly, as M, increases, an oblique wave with m,# 0 becomes the most unstable when 

M, = M,* = 0.705, which is in good agreement with the estimate M,* = 0.6-0.8 for finite 

Reynolds /lo/. Here, 

cb = OUe (1 - M21,2)‘/., nr, < T@,*; 0, = cl&, (2M,)-5, M, > M,* (1.4) 

A more complete picture characterizing the time instability is given in Fig.1, where we 
show the isolines of the increment of the increase of Re o1 (k,m;M,)/o,, for M, ~0.85; the 

neutral curve is shown by the dot-dash curve. The domain with large values of the growth 

increment in the neighbourhood of the most unstable wave (k,, m,) is clearly pronounced 
(indicated by a cross). The plane disturbances with m =O are much weaker: 

M,) = ooe (1 - Mw2)‘/a --f 0 
max Re o,(k, 0; 

as Mm--+1 -0, whereas in accordance with (1.4), a,-a,/1/2#0 

as M-+1. 
In the transonic domain M,zi, the theory of /l, 2/ is violated for two-dimensional 

flows. Whereas, the-unstable three-dimensional oscillations in the (k,, me) region, are 

described as before in the framework of the traditional scheme of /l, 2/ for all Hach numbers 

MCO. 
With M,)f, the case S<O has not been considered. It is of little interest and 

does not affect the results of the analysis concerned with finding the most unstable wave, 

since in this case (1.1) amounts to the DR for the direct plane waves in the supersonic BL 

/15/, which has no unstable roots. 

2. An impulsive source. The above analysis of time instability is useful when solving 
the problem of the development of the disturbances generated by a source that acts impulsively 

on the boundary layer /7, 8/. Such a source generates a wave packet, the basic characteristics 
of which as t-+oo are determined by the properties of the DR on the most unstable wave /16, 

We take as the source the injection-extraction via holes of diameter d* in the plane 
plate. (For the equations of /14/ to be applicable, we require that the distance L* between 



the forward edge and the centre of the hole be sufficiently large, so that the Reynolds number 

R, obtained from L* an6 the incoming flow parameters, can be regarded as tending to 1ilfiriil.y:. 

The boundary conditions on the I'latt, arc 

I, = U' =z 0, c = 6u, (t, I, ;), y =: 0 (2.1) 

where u and u' are the velocity vector projections on the .I: and z axes, and u is the 

vertical component of the velocity; U0 ES 0 outside the hole x2 -+ z? < $14 (d is the dimen- 

sionless diameter) and t,<o for t ,-. t,. 
Assuming that the amplitude 6 of the pexturbations introduced is small, we linearize 

the equations of the freely interacting boundary layer /14/ with respect to this parameter, 

then, to solve the resulting linear problem, we apply a Laplace transformation with respect 

to time t and a Fourier transformation with respect to the x and z coordinates. For the 

function .4' (t, X, Z), describing the instantaneous displacement of the streamlines in the 

thicker basic boundary layer /14/, we obtain (in the same way as in /3, 8/) 

Here, 

v”* (0, k, m) = l*i dx dze-'(kx+m*) 1 e-%, (t, X, Z) dt 
-m 0 

is the Fourier-Laplace transform of the function u0 of boundary condition (2.1). Following 

/4, 7, 81, we start the evaluation of integral (2.2) with the inverse Laplace transformation. 

We have 

A’ = Re [A, (1, x, z)l (2.3) 

AC’=&2 1 dm fdk 
UO’ (0, k, m) exp [o,, (k, m; Al_,) f + Ikr + rmz] 

1,=,--N 0 
d@ [Q, (k, m; ~f,)l/dQ 

Fig.1 

For the case of plane disturbances, we know how to 

estimate the contribution to the A,’ of (2.3) of the sum of 

all integrals, starting with the second (they describe the 

stable disturbances), see /4/, and the same method is easily 

extended to the three-dimensional case, and gives the same 

form 0 (t-‘) uniformly with respect to I and z. 

To evaluate the integral with n = 1 remaining in (2.31, 

we devloped the special method of /J/, which is based on 

ideas of the saddle -point method. It was noted /8/ that, 

starting with the instant t = 5, good accuracy (a few 

percent) is obtained by evaluating the integral by the method 

of steepest descent. The main characteristics of the limit- 

ing form of the wave packet as t-+cc can be found in the 

context of Gauss's model /17/. 

In short, the group velocity of the wave packet is 

given by the relations U = -8 Im o,iak, V = -a Im qlam 
(where U and V are the projections on the I and z axes of 

the velocity of propagation of the perturbation amplitude 

maximum), which are evaluated at the point (k, m) with 

maximum increment of the growth CJ~. In the present case, 

;th_ "I; > I@,*, there are two such points: (& Q) and 

m, By the DR symmetry with respect to m, the dif- 
fkience in the velocities U, V for these points can only 

consist in different signs of V (which would imply forking 
of the wave packet). Direct calculation gives V = 0 for all plach numbers and U = U, (1 - 
ll/Im2)-“@ for M, < Mm*, U = U, (2M,p for M, > Ma*, where u, ~4.49 is the group 

velocity of propagation of plane disturbances in an incompressible fluid /7/. Thus, though 

a pair of symmetric oblique waves becomesthemost unstable when M,>M,*, the disturbance 

still does not fork even in this case. 
The Gauss model /16, 17/ can be extended to the case of the two most unstable waves. The 

final relations will not be quoted here because of their length. We note only that the iso- 

lines of the amplitude IA,'1 in the neighbourhood of the maximum at I= U,t, z: 0, are ellipses 
as before; as M, apprOaCheS Mm*, these ellipses are compressed along the z axis (this IS 
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connected with the vanishing of a%, {k,, ~$M,*)/ih~). 

In Fig.2 we indicate by, 1,2, and 3 the dependences on the Mach number of aJo,,, u/u,, 
and h/h, respectively, where h = 2x/k, is the characteristic wavelength in the packet, 
and ho = 2nik,‘* is its value in the incompressible fluid. These relations have a continuous 
derivative at the point of conjugation &l, = M,*. 1 

2 

1.5 

7 

a.5 

Fig.2 Fig.3 
3.5 m 7 

Fig.4 

3. Three-dimensional instability. Let us analyse the three-dimensional instability 
qualitatively; for this, we put o = io, in the DR (1.1) (wp is the real frequency), and we 
assume as before that m is real. The complex quantity k(rn,~~;~~) then has to be found from 
the relation 

tf, (8,) = Q (k, m; M,), Q, = i’&,k+‘. (3.1) 

In the case of three-dimensional instability, the DR can no longer be reduced to a well- 
studied type for plane perturbations. It can be shown, however, that (3.1) also has a 
denumerable set of roots; only one, call it k,, is unstable. 

The isolines of the growth increment x(m, 00) = -1m k,(m,w,,;M,) for IV= = 2 (it was 
at this Mach number that the experimental work of /18/ was performed, and the calculations in 

/ll/,Sect.G.l,weremade), areshowninFig.3 (normalizedtothemaximumvalue x =x,, =0.127). 
Noticethepronounced maximum, reachedontheobliquewavewith m=m,=3.02 at 0,=3.5. (The 

frequencydependenceofthe sidewavenumber m,, correspondingtothemostunstablewavewith@o = cons& 
is shownbythedot-dashcurve). Theneutralcurvewith x = 0 is showncontinuous in Fig.3. 

There is an analytic representation for it which is too unwieldy to quote here, see /13/. 
We shall merely mention the coordinates of the point A, 

m = k,’ (2nil )-" (2Mm2 - l)*'*, 
indicated by a small circle in Fig.3: 

oO= o,'(2M,)-%(o,'=2.298 is the neutral frequency for the directplane 
waves in & incompressible fluid /3, 4, 7/). It is clear from this that, with M,>i, the 
size of the stable domain decreases as the Mach number increases. 

As m+O we have 

Hence it follows that, for small m, the growth increment x = 0 (m’) is negligibly small 
even compared with the wave number EL = ]Rek, 1 = o(m). This is clearly illustrated in Fig.4, 
where we show thedependences on m of the increment x, of the wave number a,and of the angle 
of wave propagation x =arctg (m/a) with 01) =3.5. It must be said that the type of behaviour 
of x and a is in qualitative agreement with the calculations of /II/ from the Dan-Lien 
system and the experimental data /18/, with the exception that the direct plane wave in /ll, 
18/ has a non-zero growth increment and wave number. Moreover, 

xi3 (X0 
X -+ x0 = arctg (1/Mm2 - 1) = 

is the Mach angle) as m-+0 (instead of x -0, as in /11, 18/l. 
In short, the ordinary three-deck scheme /l, 2/ predicts a pronounced maximum of the 

growth increment on the essentially three-dimensional (oblique) waves. This theory does not 
describe direct plane unstable waves in the supersonic BL. It seems that the growth increments 
of these waves amount to infinitesimal quantities with respect to the increments of the most 
unstable oblique waves as R-+oo. Thus the main contribution to the wave packets is from the 
oblique waves described in the context of the ordinary scheme /l, 2/, while the contribution 
of the direct plane waves is negligible as R-wm.. 

4. Harmonic source. Starting from the instant t = 0, let the injection-extraction 
take place according to the harmonic law u0 = sin(o,tju,,(x,z) (thus, u0 = 0 for t< 0). We 
have to introduce the initial instant t = 0 in order to define uniquely the weighting factors 
in the eigenfunctions, which are Tollmien-Schlichting/4, 9/ waves that increase exponentially 
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To isolate the one-valued branch of the expression Q, we have to make cuts in the 

complex k plane (with fixed m) along the positive part of the imaginary k axis, and also 

along the rays Re k = -iIm/l/M,2 - 1, Im k > 0 in the case IM, > 1, and along the rays 

Im k ? & m/l/l - Mma, Re k = 0 when M,<l. 

By the contour of integration C in the integral Z I we mean any contour in the complex k 

plane (in general, dependent on m as a parameter), which passes above the first, but below all 

the other, roots of the DR (3.1) /4, 9/. Direct numerical calculation shows that the integral 

1, damps quite rapidly as r = 1/x" + zz+ 00 and with rz 5 its contribution to A' amounts 

to a few percent compared with the contribution of the integral I,, which describes the super- 

position of the Tollmien-Schlichting oblique waves which increase downstream. 

The behaviour of the integral .f, as I increases depends on the exponential expression 

cp. An exponential rise is given by the quantity Recp = -1m k, =x, which is discussed in 

detail in Sect.3. The fact along of the presence of the most unstable oblique wave (with 

m = m, # 0) enables us to predict the qualitative picture of the development of the waves of 

instability at great distances downstream from the source: the disturbances increase most 

rapidly at an angle a = a, -arctg(/ 3 Re k,(m,,w,; M,)/dm 1) to the I axis /9/. 

We fix M, -= :! and o0 -3.5 (Fig.4). For these parameter values, n,=4.7o. In view 

of the small growth increments, however (recall that the maximum xee is at most only 0.127), 

the asymptotic estimates work badly even with .i 5-15 (the error amounts to tens of percent), 

as was also pointed out in /lli. 

The results of numerical evaluation of the integral I, are shown in Fig.5 in the form 

of curves of J /121i I, against a(/,-=0.217 is a normalizing constant). The injection func- 

tion was taken as I,",, = &-la-: CX~I (+4a-2 (z2 -+?)) with characteristic source size (1 - :! (the com- 

putations for a =I and z- 10 are indicated by broken curves). There is an obvious trend 

to preferential growth of the disturbances 111 a direction c(, ~- arctg (a/r), in qualitative agree- 

ment with the results of /ll, 18/. Moreover, the actual shape of the curves with a sharp 

intermediate first maximum and a weak second maximum, is surprisingly similar to the results 

of /ll, 18/. From Flg.5, the angle rx, can be estimated as 4-6O. 

Let us emphasize that, according to our calculations, the perturbations in the thrce- 

dimensional packet of Tollmien-Schlichting waves increase downstream for fixed z In the range 

0 i_ s :.< 2.5, including strictly downstream (though the direct plane waves are stable in the 

supersonic BL). 
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ON NON-STATIONARY MOTIONS OF LOCAL INHOMOGENEITIES 
IN A PSEUDOFLUIDIZED LAYER* 

N.N. BOBKOV and YU.P. GUPALO 

The growth (collapse) of a moving local inhomogeneity in the concentration 
of particles in a pseudofluidized layer is investigated. The inhomogenity 
is modelled using a spherical packet of particles /l-3/. The mass of the 
packet and the distribution of the particles throughout its volume remain 
constant. The density of the solid phase is assumed to be large compared 
with the density of the fluidizing fluid while the interaction between 
the phases is assumed to be linear with respect to the velocity of the 
relative motion of the phases. The simplest model, where there is no 
exchange between the particles in the packet and the particles in the 
layer, is analysed. 

As a result of the approximate solution of the problem on the motion 
of a packet of variable radius, a system of equations is obtained which 
relates the change in the size of the packet with the velocity of its 
motion in the layer and the rate of circulation of the disperse phase in 
it. The velocity and pressure fields inside and outside the packet are 
found and the stationary states of the system are determined. It is shown 
that, unlike the case of bubbles where there is always a unique stationary 
state /4, 5/, the number of stationary states of the packet can vary 
depending on the physical parameters of the pseudofluidized system. 
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